575 research outputs found

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    ©2019. American Geophysical Union. All Rights Reserved.Subglacial water ïŹ‚ow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water ïŹ‚ow, that is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit ïŹ‚ow paths can be distinguished from single‐conduit ïŹ‚ow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely ïŹ‚ows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable conïŹgurations that last 3–7 days, while tremor produced by single‐conduit ïŹ‚ow remains more stationary. We also ïŹnd that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system.Raw seismic data described in this paper are available through the Incorporated Research Institutions for Seismology Data Management Center (http://ds.iris.edu/mda/ZQ? timewindow=2015‐2016; Amundson et al., 2015). The raw weather data used in this paper can be found through the Arctic Data Center (https://doi.org/ 10.18739/A2H98ZC7V; Bartholomaus & Walter, 2018). Python code developed to carry out the analyses presented here is available at https://github.com/ voremargot/Seismic‐Tremor‐Reveals‐ Spatial‐Organization‐and‐Temporal‐ Changes‐of Subglacial‐Water‐System and https://github.com/ tbartholomaus/med_spec. This study was made possible with support from the University of Texas Institute for Geophysics and the University of Idaho. We thank Ginny Catania for the loan of weather stations. J. P. W.'s and J. M. A.'s contributions to this work were supported by the U.S. National Science Foundation (OPP‐1337548 and OPP‐ 1303895). T. C. B. thanks Dylan Mikesell for an early conversation, which inspired the analysis presented here.Ye

    Open Heavy Flavor Production in QCD -- Conceptual Framework and Implementation Issues

    Full text link
    Heavy flavor production is an important QCD process both in its own right and as a key component of precision global QCD analysis. Apparent disagreements between fixed-flavor scheme calculations of b-production rate with experimental measurements in hadro-, lepto-, and photo-production provide new impetus to a thorough examination of the theory and phenomenology of this process. We review existing methods of calculation, and place them in the context of the general PQCD framework of Collins. A distinction is drawn between scheme dependence and implementation issues related to quark mass effects near threshold. We point out a so far overlooked kinematic constraint on the threshold behavior, which greatly simplifies the variable flavor number scheme. It obviates the need for the elaborate existing prescriptions, and leads to robust predictions. It can facilitate the study of current issues on heavy flavor production as well as precision global QCD analysis.Comment: 13 pages, 10 figures, Proceedings of Ringberg Workshop: New Trends in HERA Physics 2001, Munich, German

    Seismic Tremor Reveals Spatial Organization and Temporal Changes of Subglacial Water System

    Get PDF
    Subglacial water flow impacts glacier dynamics and shapes the subglacial environment. However, due to the challenges of observing glacier beds, the spatial organization of subglacial water systems and the time scales of conduit evolution and migration are largely unknown. To address these questions, we analyze 1.5‐ to 10‐Hz seismic tremor that we associate with subglacial water flow, hat is, glaciohydraulic tremor, at Taku Glacier, Alaska, throughout the 2016 melt season. We use frequency‐dependent polarization analysis to estimate glaciohydraulic tremor propagation direction (related to the subglacial conduit location) and a degree day melt model to monitor variations in melt‐water input. We suggest that conduit formation requires sustained water input and that multiconduit flow paths can be distinguished from single‐conduit flow paths. Theoretical analysis supports our seismic interpretations that subglacial discharge likely flows through a single‐conduit in regions of steep hydraulic potential gradients but may be distributed among multiple conduits in regions with shallower potential gradients. Seismic tremor in regions with multiple conduits evolves through abrupt jumps between stable configurations that last 3–7 days, while tremor produced by single‐conduit flow remains more stationary. We also find that polarized glaciohydraulic tremor wave types are potentially linked to the distance from source to station and that multiple peak frequencies propagate from a similar direction. Tremor appears undetectable at distances beyond 2–6 km from the source. This new understanding of the spatial organization and temporal development of subglacial conduits informs our understanding of dynamism within the subglacial hydrologic system

    Determining V(ub) from B+ --> D*+(s) e+ e- and B+ --> D*+ e+ e-

    Full text link
    It was recently pointed out that the decays B^+ --> D^{*+}_s gamma and B^+ --> D^{*+} gamma can be used for an extraction of |V_{ub}|. The theory of these decays is poorly understood. It was shown that in a world of almost degenerate b and c-quarks the decay would be computable. The severe difficulties that are encountered in the realistic calculation stem primarily from the very hard photon produced in the two body decay. We point out that in the decays B^+ --> D^{*+}_s e^+e^- and B^+ --> D^{*+} e^+e^- the photon vertex is soft when the charmed meson is nearly at rest (in the B^+ rest frame). This allows us to compute with some confidence the decay rate in a restricted but interesting kinematic regime. Given enough data the extraction of V_{ub} with reasonably small uncertainties could proceed through an analysis of these exclusive decays much as is done in the determination of V_{cb}.Comment: 9 pages, latex (revtex), replaced with published versio

    delta C-13 Analysis of Mars Analog Carbonates Using Evolved Gas Cavity - Ringdown Spectrometry on the 2010 Arctic Mars Analog Svalbard Expedition (AMASE)

    Get PDF
    The 2010 Arctic Mars Analog Svalbard Expedition (AMASE) investigated two distinct geologic settings on Svalbard, using instrumentation and techniques in development for future Mars missions, such as the Mars Science Laboratory (MSL), ExoMars, and Mars Sample Return (MSR). The Sample Analysis at Mars (SAM) instrument suite, which will fly on MSL, was developed at Goddard Space Flight Center (GSFC), together with several partners. SAM consists of a quadrupole mass spectrometer (QMS), a gas chromatograph CGC), and a tunable laser spectrometer (TLS), which all analyze gases created by evolved gas analysis (EGA). The two sites studied represent "biotic" and "abiotic" analogs; the "biotic" site being the Knorringfjell fossil methane seep, and the "abiotic" site being the basaltic Sigurdfjell vent complex. The data presented here represent experiments to measure the carbon isotopic composition of carbonates from these two analogs using evolved gas analysis coupled with a commercial cavity ringdown CO2 isotopic analyzer (Picarro) as a proxy for the TLS on SAM

    Single Neutralino production at CERN LHC

    Full text link
    The common belief that the lightest supersymmetric particle (LSP) might be a neutralino, providing also the main Dark Matter (DM) component, calls for maximal detail in the study of the neutralino properties. Motivated by this, we consider the direct production of a single neutralino \tchi^0_i at a high/energy hadron collider, focusing on the \tchi^0_1 and \tchi^0_2 cases. At Born level, the relevant subprocesses are q\bar q\to \tchi^0_i \tilde g, g q\to \tchi^0_i \tilde q_{L,R} and q\bar q'\to \tchi^0_i\tchi^\pm_j; while at 1-loop, apart from radiative corrections to these processes, we consider also gg\to \tchi^0_i\tilde{g}, for which a numerical code named PLATONgluino is released. The relative importance of these channels turns out to be extremely model dependent. Combining these results with an analogous study of the direct \tchi^0_i\tchi^0_j pair production, should help in testing the SUSY models and the Dark Matter assignment.Comment: 22 pages and 12 figures; version to appear in Phys.Rev.

    Shear Alignment and Instability of Smectic Phases

    Full text link
    We consider the shear flow of well-aligned one-component smectic phases, such as thermotropic smectics and lamellar diblock copolymers, below the critical region. We show that, as a result of thermal fluctuations of the layers, parallel (cc) alignment is generically unstable and perpendicular (aa) alignment is stable against long-wavelength undulations. We also find, surprisingly, that both aa and cc are stable for a narrow window of values for the anisotropic viscosity.Comment: To appear in PRL. Revtex, 1 figure

    Treatment of Heavy Quarks in Deeply Inelastic Scattering

    Full text link
    We investigate a simplified version of the ACOT prescription for calculating deeply inelastic scattering from Q^2 values near the squared mass M_H^2 of a heavy quark to Q^2 much larger than M_H^2.Comment: 14 pages, 5 figure

    Uncertainties of the Inclusive Higgs Production Cross Section at the Tevatron and the LHC

    Full text link
    We study uncertainties of the predicted inclusive Higgs production cross section due to the uncertainties of parton distribution functions (PDF). Particular attention is given to bbH Yukawa coupling enhanced production mechanisms in beyond SM scenarios, such as MSSM. The PDF uncertainties are determined by the robust Lagrange Multiplier method within the CTEQ global analysis framework. We show that PDF uncertainties dominate over theoretical uncertainties of the perturbative calculation (usually estimated by the scale dependence of the calculated cross sections), except for low Higgs masses at LHC. Thus for the proper interpretation of any Higgs signal, and for better understanding of the underlying electroweak symmetry breaking mechanism, it is important to gain better control of the uncertainties of the PDFs.Comment: LaTeX, JHEP, 19 pages, 14 figure
    • 

    corecore